
Encrypting Matrix
Building a universal end-to-end encrypted 

communication ecosystem with Matrix and Olm

matthew@matrix.org
http://www.matrix.org



What is
Matrix?



A non-profit open 
standard for 

defragmenting 
communication



Creating a global 
encrypted communication
meta-network that bridges 

all the existing silos & 
liberates our 

communication to be 
controlled only by us.
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No single party owns your 
conversations.

Conversations are shared 
over all participants.
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Use Matrix for:

Group Chat (and 1:1)
WebRTC Signalling
Bridging Comms Silos
Internet of Things Data

…and anything else which needs to 
pubsub persistent data to the world.
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Why are you re-inventing 
XMPP!?!? 9



WE ARE 
NOT.
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• Completely different philosophy & architecture:
– A single, monolithic, consistent, spec.
– Different primitives:

• Syncing decentralised conversation history
(not message passing / pubsub)

• Group conversation as a first class citizen
• E2E crypto as a first class citizen

– HTTP+JSON as the baseline API
(but you can use other transports too!)

– Core focus on defragmentation and bridging
(hence the name “matrix”).
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How is this different to XMPP?



Matrix Architecture

Clients

Home 
Servers

Identity
Servers

Application
Servers



The Matrix Ecosystem

The	Matrix	Specification	(Client/Server	API)

client-side
server-side

Other	Servers	and	
Services

Synapse
(Original	Python	
Home	Server)

Matrix	
Application	

Services	&	Bridges

Other	
Clients

Matrix	
iOS

Console

MatrixKit (iOS)
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Matrix	
Web	

Console

matrix-
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Android	
Console
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matrix-
react-
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(Next-gen	Golang
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What do you get in the spec?
• Decentralised conversation history

(timeline and key-value stores)
• Group Messaging
• End-to-end Encryption
• VoIP signalling for WebRTC
• Server-side push notification rules
• Server-side search
• Read receipts, Typing Notifs, Presence
• Synchronised read state and unread counts
• Decentralised content repository
• “Account data” for users per room
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How does it work?
https://matrix.org/#about
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Clients
• >40 matrix clients (that we know about)

– Ranging from text UIs (Weechat, Emacs(!))
– …to desktop apps (Quaternion, NaChat, Pidgin)
– …to glossy web and mobile clients (Riot)
– …to protocol proxies (matrix-ircd)

• Over 15 client-side SDKs:
– Official: JS, React, iOS, Android
– Semi-official: Python, Perl5, Go
– Community: Erlang, Ruby, Lisp, Elixir, Haskell, Rust…
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Home servers
• Synapse: the original reference Matrix home 

server implementation from the core team.
– 50K lines of Python/Twisted.
– Some major perf and maintainability challenges…

• Dendrite: next-generation HS from the core team
– ~10K lines of Golang
– Work in progress, but alpha approaching soon…
– Built around ”kafkaesque” append-only event logs
– Scales horizontally.

• Ruma: Community project Rust implementation…
• BulletTime (Go), Pallium (Go), jSynapse (Java) 

experiments from the community
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Latest Bridges!
• Official ones:
– IRC
– Slack
– Gitter
– Telegram
– Rocket.Chat
–MatterMost
– FreeSWITCH
– Asterisk (Respoke)
– libpurple

• Community ones
– Twitter
– iMessage
– Facebook Msgr
– Hangouts
– Slack webhooks
– Gitter (‘sidecar’)
– ~8 IRC ones…
– ~4 XMPP ones...
– ~3 Telegram ones…



What does it look like?

https://riot.im
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Community Status
• Started out in Sept 2014
• Currently in very late beta
• ~700K user accounts on the Matrix.org homeserver
• ~700K messages per day
• ~100K unbridged accounts
• ~100K unbridged messages per day
• ~70K rooms that Matrix.org participates in
• ~1500 federated servers
• ~1000 msgs/s out, ~10 msgs/s in on Matrix.org
• ~50 companies building on Matrix
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End to End Crypto
with Olm

23https://matrix.org/git/olm



Without end-to-end 
encryption, Matrix’s 

replicated conversation 
history is a privacy 

problem.



è Two years spent building 
decentralised E2E crypto 
into the heart of Matrix.



Goals
• Configurable trade-off between privacy 

and usability per room.
– Sometimes you want PFS…

– ...but sometimes you want to replay history.

• Encrypt & trust per-device, not per-user.
• Support big rooms (thousands of devices)
• Encrypt non-public rooms by default
• Be supported on all Matrix clients.
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High level overview
• Two mechanisms at work:
– Olm – a Double Ratchet implementation

• provides a secure channel between two devices

• used mainly for syncing key data

– Megolm - a new ratchet that encrypts a sender’s 
messages for a group of receivers
• Ratchet state is shared to receivers 1:1 over Olm

• Ratchets can be replaced to seal history

• Ratchets can be fast-forwarded to share selective 
history
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Key management
• Uses EC25519 keys.
• Keypairs generated per-device at login.
• Private keys are stored only on the device (duh).
• Public keys are published on your homeserver.
• Keys are verified by comparing public fingerprints.

– This is placeholder UX; we are looking at 
mnemonics, QR codes, cross-signing and other 
alternatives.

• Attachments are AES-CTR encrypted (with 
integrity hash) using a new random key per file.
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Olm
• New Apache licensed C++11 implementation of trevp/moxie’s 

Double Ratchet Algorithm, exposing a C API: 
https://matrix.org/git/olm

• Formal spec: https://matrix.org/docs/spec/olm.html

• Supports encrypted async 1:1 communication.

• Chosen for quality & to avoid ruling out compat with WhatsApp etc.

• Defines a non-reversible series of keys for encrypting messages by 
advancing two ratchets; a hash ratchet and a ECDH ratchet.

• The ECDH ratchet advances when the message flow changes 
direction, spawning a new hash ratchet.

• Feb 2016: we encrypted each msg per recipient via Olm: O(n2).
No way to share history.
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Alice
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Megolm
• Entirely new ratchet for group chat with shareable history.

• Formal spec: https://matrix.org/docs/spec/megolm.html

• Each sender maintains a ratchet “aka outbound session” to encrypt 
messages they send to a room.

• The ratchet is shared with other participants via Olm (as “inbound 
sessions”).  Uses new direct “to-device” messaging API in Matrix.

• Participants can save the ratchet key data to replay server history.

• The sender can choose to start a new ratchet at will, depending on 
the privacy desired – typically every N messages, or whenever a 
user leaves a room.

• An existing ratchet can be fast-forwarded before sharing, to lock 
the receiver out of being able to decrypt prior history.

• Nov 2016: Megolm beta starts
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Olm	+	Megolm C	API

Account
• Keys

Session
• Initial	Key	Exchange

Ratchet
• Encrypt
• Decrypt

Crypto
• Curve25519
• AES
• SHA256

Megolm Group	Ratchet

libolm
130KB of x86-64, 208KB of asm.js



Security Assessment
• libolm 1.3.0 assessed by NCC Group in Sept 2016
• Findings released to the public!

https://www.nccgroup.trust/us/our-research/matrix-
olm-cryptographic-review

• Olm: 2x low risk finding, 1x informational
• Megolm: 1x high, 1x medium, 4x low risk.
• 3 findings were features, not bugs (i.e. ability to 

configure a room for replaying history!)
• All findings fixed in libolm or the Matrix Client SDKs.
• No issues found in libolm since the audit!
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Demo!
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Architectural problems…
• Ironically, we may have focused too much on libolm.
• Reliably and efficiently synchronising megolm ratchets over 

a federated system like Matrix is non-trivial.
• More LOC than libolm itself, and in many ways more fiddly.
• You need to know precisely what devices are in a room when 

sending a message, so you can ensure your megolm ratchet 
is shared with them so they can decrypt your message…

• …so very prone to races, which we’re still fixing currently.
• Heavily coupled to Matrix Client SDK for server interaction, 

so was implemented as part of the client SDKs…
• …resulting in 3 separate implementations (JS, ObjC, Java) of 

precisely the same logic. To be fixed in future?
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Design problems…
• It’s possible that Megolm is over-engineered. 
• We can end up generating a lot of session keys, 

which must then be stored for decrypting history.
• Where do we put them all?
• Given we have so many sessions, why not share a 

new ratchet than fast-forward existing ones?
• à Plan is to see how well it works in practice 

& tune the session rate before rethinking.
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Goals checklist
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• Configurable trade-off between privacy and usability per room.
– Supported in protocol (but not really exposed yet in clients)

• Encrypt & trust per-device, not per-user.
– Done!

• Support big rooms (thousands of devices)
– Done!

• Encrypt non-public rooms by default
– Will be done once out of beta

• Be supported on all Matrix clients.
– Not yet. Considering a e2e proxy to ease migration, and/or providing a 

high level cross-platform helper library (which we really need whatever).



Metadata Privacy
• Matrix does not protect metadata currently; server 

admins can see who you talk to & when (but not 
what). If you need this today, look at Ricochet or 
Vuvuzela etc.

• Protecting metadata is incompatible with 
bridging.

• However, in future peer-to-peer homeservers
could run clientside, tunnelling traffic over Tor and 
using anonymous store-and-forward servers (a la 
Pond).

• But for now this is sci-fi.
38
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Matrix with Pond strategy

Existing App

Tor



• Riot/Web 0.9.7 (released today!) gives:
– Warning user properly on unknown devices
– Ability to blacklist unverified devices by default
– Backing up & restoring megolm session ratchet data
– Entirely new device tracking API to improve session sharing 

reliability
– “Rageshake” bug reporting to help debug when things fail

• Unfortunately E2E is definitely still in beta.
• Develop branches of Riot/iOS & Riot/Android are 

implementing the above too.
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Latest release info



• Ability to share session ratchet data with new devices or 
new room participants

• Cross-signing device keys?
• Better device verification
• Better push notification UX for E2E rooms
• Better primitives & performance
• Turning on E2E by default for rooms with private history
• Negotiating E2E with legacy clients(?)

41

Olm: What’s next?



• More hosted bridges, bots, services etc
• Threading
• Message tagging (e.g. “Like” support)
• Group ACLs
• File tagging and management
• Decentralised identity
• “Fixing spam”
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Matrix: What’s next?



We need help!!
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• We need people to try running their own 
servers and join the federation.

• We need people to run gateways to their 
existing services

• We need feedback on the APIs.
• Consider native Matrix support for new 

apps
• Follow @matrixdotorg and spread the 

word!
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Thank you!
matthew@matrix.org

http://matrix.org
@matrixdotorg
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Alice Bob
Alice and Bob both generate identity (I) & 
ephemeral (E) elliptic curve key pairs

Initial Shared Secret (ISS) =
ECDH(Ea, Ib) +
ECDH(Ia, Eb) +
ECDH(Ea, Eb)

Discard Ea
Derive chain key from ISS (HMAC)
Derive message key (K0) from chain key 
(HMAC)
Derive new chain key ß hash ratchet
M0 = Message plaintext
C0 = Authenticated Encryption of (M0, K0)
Ra0 = generate random ratchet key pair
Ja0 = incremental counter for each hash
ratchet advancement

Ia, Ea, Eb, Ra0, Ja0, C0

A Double ratchet.
Kinda sorta.



Alice Bob
Compute same Initial Shared Secret =

ECDH(Ea, Ib) +
ECDH(Ia, Eb) +
ECDH(Ea, Eb)

Compute same K0
M0 = Authenticated decryption of (C0, K0)

To respond, B starts new ratchet chain:
Rb1 = generate random ratchet key pair
New Initial Shared Secret = 

ECDH(Ra0, Rb1) ß ECDH Ratchet

C0 = Authenticated Encryption of (M, K0)
Ra0 = generate random ratchet key
Ja0 = incremental counter for each hash
ratchet advancement

Rb1, Jb1, C1

A Double ratchet.
Kinda sorta.



The client-server API
To send a message:

curl -XPOST -d '{"msgtype":"m.text", "body":"hello"}' 
"https://alice.com:8448/_matrix/client/api/v1/rooms/ROOM_
ID/send/m.room.message?access_token=ACCESS_TOKEN"

{
"event_id": "YUwRidLecu"

}
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The client-server API
To set up a WebRTC call:

curl -XPOST –d '{\
"version": 0, \
"call_id": "12345”, \
"offer": {
"type" : "offer”,
"sdp" : "v=0\r\no=- 658458 2 IN IP4 127.0.0.1…"

}
}' 
"https://alice.com:8448/_matrix/client/api/v1/rooms/ROOM_
ID/send/m.call.invite?access_token=ACCESS_TOKEN"

{ "event_id": "ZruiCZBu” } 49



Basic 1:1 VoIP Matrix Signalling

Caller                   Callee
m.call.invite ----------->
m.call.candidate -------->
[more candidates events]

User answers call
<------ m.call.answer

[media flows]
<------ m.call.hangup
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Bridges and Integrations

Existing App

Application
Service

3rd party
Server

3rd party
Clients



Typical Bridging Stack
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matrix-
appservice-

irc

matrix-appservice-bridge

matrix-appservice-node

matrix-js-sdk

Node	JS

matrix-
appservice-

slack

matrix-
appservice-
purple …
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Matrix to IOT…

Janus WebRTC Gateway
(from MeetEcho)

Parrot Bebop
Drone

https://www.youtube.com/watch?v=D7jZSYkXqt4&t=2649



Matrix and VR…


