
Encrypting Matrix
Building a universal end-to-end encrypted

communication ecosystem with Matrix and Olm

matthew@matrix.org
http://www.matrix.org

What is
Matrix?

A non-profit open
standard for

defragmenting
communication

Creating a global
encrypted communication
meta-network that bridges

all the existing silos &
liberates our

communication to be
controlled only by us.

5

Skype

Slack

Gitter

IRC

Github

6

Skype

Slack

Gitter

IRC

Github

No single party owns your
conversations.

Conversations are shared
over all participants.

7

Use Matrix for:

Group Chat (and 1:1)
WebRTC Signalling
Bridging Comms Silos
Internet of Things Data

…and anything else which needs to
pubsub persistent data to the world.

8

Why are you re-inventing
XMPP!?!? 9

WE ARE
NOT.

10

• Completely different philosophy & architecture:
– A single, monolithic, consistent, spec.
– Different primitives:

• Syncing decentralised conversation history
(not message passing / pubsub)

• Group conversation as a first class citizen
• E2E crypto as a first class citizen

– HTTP+JSON as the baseline API
(but you can use other transports too!)

– Core focus on defragmentation and bridging
(hence the name “matrix”).

11

How is this different to XMPP?

Matrix Architecture

Clients

Home
Servers

Identity
Servers

Application
Servers

The Matrix Ecosystem

The	Matrix	Specification	(Client/Server	API)

client-side
server-side

Other	Servers	and	
Services

Synapse
(Original	Python	
Home	Server)

Matrix	
Application	

Services	&	Bridges

Other	
Clients

Matrix	
iOS

Console

MatrixKit (iOS)

matrix-ios-sdk

Matrix	
Web	

Console

matrix-
angular-
sdk

matrix-js-sdk

Android	
Console

matrix-android-sdk

matrix-
react-
sdk

Dendrite
(Next-gen	Golang
Home	Server)

What do you get in the spec?
• Decentralised conversation history

(timeline and key-value stores)
• Group Messaging
• End-to-end Encryption
• VoIP signalling for WebRTC
• Server-side push notification rules
• Server-side search
• Read receipts, Typing Notifs, Presence
• Synchronised read state and unread counts
• Decentralised content repository
• “Account data” for users per room

14

How does it work?
https://matrix.org/#about

15

Clients
• >40 matrix clients (that we know about)

– Ranging from text UIs (Weechat, Emacs(!))
– …to desktop apps (Quaternion, NaChat, Pidgin)
– …to glossy web and mobile clients (Riot)
– …to protocol proxies (matrix-ircd)

• Over 15 client-side SDKs:
– Official: JS, React, iOS, Android
– Semi-official: Python, Perl5, Go
– Community: Erlang, Ruby, Lisp, Elixir, Haskell, Rust…

16

Home servers
• Synapse: the original reference Matrix home

server implementation from the core team.
– 50K lines of Python/Twisted.
– Some major perf and maintainability challenges…

• Dendrite: next-generation HS from the core team
– ~10K lines of Golang
– Work in progress, but alpha approaching soon…
– Built around ”kafkaesque” append-only event logs
– Scales horizontally.

• Ruma: Community project Rust implementation…
• BulletTime (Go), Pallium (Go), jSynapse (Java)

experiments from the community
17

Latest Bridges!
• Official ones:
– IRC
– Slack
– Gitter
– Telegram
– Rocket.Chat
–MatterMost
– FreeSWITCH
– Asterisk (Respoke)
– libpurple

• Community ones
– Twitter
– iMessage
– Facebook Msgr
– Hangouts
– Slack webhooks
– Gitter (‘sidecar’)
– ~8 IRC ones…
– ~4 XMPP ones...
– ~3 Telegram ones…

What does it look like?

https://riot.im

19

Community Status
• Started out in Sept 2014
• Currently in very late beta
• ~700K user accounts on the Matrix.org homeserver
• ~700K messages per day
• ~100K unbridged accounts
• ~100K unbridged messages per day
• ~70K rooms that Matrix.org participates in
• ~1500 federated servers
• ~1000 msgs/s out, ~10 msgs/s in on Matrix.org
• ~50 companies building on Matrix

20

21

22

End to End Crypto
with Olm

23https://matrix.org/git/olm

Without end-to-end
encryption, Matrix’s

replicated conversation
history is a privacy

problem.

è Two years spent building
decentralised E2E crypto
into the heart of Matrix.

Goals
• Configurable trade-off between privacy

and usability per room.
– Sometimes you want PFS…

– ...but sometimes you want to replay history.

• Encrypt & trust per-device, not per-user.
• Support big rooms (thousands of devices)
• Encrypt non-public rooms by default
• Be supported on all Matrix clients.

26

High level overview
• Two mechanisms at work:
– Olm – a Double Ratchet implementation

• provides a secure channel between two devices

• used mainly for syncing key data

– Megolm - a new ratchet that encrypts a sender’s
messages for a group of receivers
• Ratchet state is shared to receivers 1:1 over Olm

• Ratchets can be replaced to seal history

• Ratchets can be fast-forwarded to share selective
history

27

Key management
• Uses EC25519 keys.
• Keypairs generated per-device at login.
• Private keys are stored only on the device (duh).
• Public keys are published on your homeserver.
• Keys are verified by comparing public fingerprints.

– This is placeholder UX; we are looking at
mnemonics, QR codes, cross-signing and other
alternatives.

• Attachments are AES-CTR encrypted (with
integrity hash) using a new random key per file.

28

Olm
• New Apache licensed C++11 implementation of trevp/moxie’s

Double Ratchet Algorithm, exposing a C API:
https://matrix.org/git/olm

• Formal spec: https://matrix.org/docs/spec/olm.html

• Supports encrypted async 1:1 communication.

• Chosen for quality & to avoid ruling out compat with WhatsApp etc.

• Defines a non-reversible series of keys for encrypting messages by
advancing two ratchets; a hash ratchet and a ECDH ratchet.

• The ECDH ratchet advances when the message flow changes
direction, spawning a new hash ratchet.

• Feb 2016: we encrypted each msg per recipient via Olm: O(n2).
No way to share history.

29

30

Alice

Sending | Receiving

MK CK RK CK MK
-- -- -- -- --

ECDH(A0,B0)
|
|

ECDH(A1,B0) +
/|

/ |
/ + ECDH(A1,B1)

CK-A1-B0 |\
| | \

MK-0 ----+ | \
| | CK-A1-B1

MK-1 ----+ | |
| | +---- MK-0

MK-2 ----+ | |
| +---- MK-1

ECDH(A2,B1) +
/|

/ |
/ |

CK-A2-B1 |
| + ECDH(A2,B2)

MK-0 ----+ \
\
\
CK-A2-B2

|
+---- MK-0
|
+---- MK-1

Megolm
• Entirely new ratchet for group chat with shareable history.

• Formal spec: https://matrix.org/docs/spec/megolm.html

• Each sender maintains a ratchet “aka outbound session” to encrypt
messages they send to a room.

• The ratchet is shared with other participants via Olm (as “inbound
sessions”). Uses new direct “to-device” messaging API in Matrix.

• Participants can save the ratchet key data to replay server history.

• The sender can choose to start a new ratchet at will, depending on
the privacy desired – typically every N messages, or whenever a
user leaves a room.

• An existing ratchet can be fast-forwarded before sharing, to lock
the receiver out of being able to decrypt prior history.

• Nov 2016: Megolm beta starts
31

32

Olm	+	Megolm C	API

Account
• Keys

Session
• Initial	Key	Exchange

Ratchet
• Encrypt
• Decrypt

Crypto
• Curve25519
• AES
• SHA256

Megolm Group	Ratchet

libolm
130KB of x86-64, 208KB of asm.js

Security Assessment
• libolm 1.3.0 assessed by NCC Group in Sept 2016
• Findings released to the public!

https://www.nccgroup.trust/us/our-research/matrix-
olm-cryptographic-review

• Olm: 2x low risk finding, 1x informational
• Megolm: 1x high, 1x medium, 4x low risk.
• 3 findings were features, not bugs (i.e. ability to

configure a room for replaying history!)
• All findings fixed in libolm or the Matrix Client SDKs.
• No issues found in libolm since the audit!

33

Demo!

34

Architectural problems…
• Ironically, we may have focused too much on libolm.
• Reliably and efficiently synchronising megolm ratchets over

a federated system like Matrix is non-trivial.
• More LOC than libolm itself, and in many ways more fiddly.
• You need to know precisely what devices are in a room when

sending a message, so you can ensure your megolm ratchet
is shared with them so they can decrypt your message…

• …so very prone to races, which we’re still fixing currently.
• Heavily coupled to Matrix Client SDK for server interaction,

so was implemented as part of the client SDKs…
• …resulting in 3 separate implementations (JS, ObjC, Java) of

precisely the same logic. To be fixed in future?
35

Design problems…
• It’s possible that Megolm is over-engineered.
• We can end up generating a lot of session keys,

which must then be stored for decrypting history.
• Where do we put them all?
• Given we have so many sessions, why not share a

new ratchet than fast-forward existing ones?
• à Plan is to see how well it works in practice

& tune the session rate before rethinking.

36

Goals checklist

37

• Configurable trade-off between privacy and usability per room.
– Supported in protocol (but not really exposed yet in clients)

• Encrypt & trust per-device, not per-user.
– Done!

• Support big rooms (thousands of devices)
– Done!

• Encrypt non-public rooms by default
– Will be done once out of beta

• Be supported on all Matrix clients.
– Not yet. Considering a e2e proxy to ease migration, and/or providing a

high level cross-platform helper library (which we really need whatever).

Metadata Privacy
• Matrix does not protect metadata currently; server

admins can see who you talk to & when (but not
what). If you need this today, look at Ricochet or
Vuvuzela etc.

• Protecting metadata is incompatible with
bridging.

• However, in future peer-to-peer homeservers
could run clientside, tunnelling traffic over Tor and
using anonymous store-and-forward servers (a la
Pond).

• But for now this is sci-fi.
38

39

Matrix with Pond strategy

Existing App

Tor

• Riot/Web 0.9.7 (released today!) gives:
– Warning user properly on unknown devices
– Ability to blacklist unverified devices by default
– Backing up & restoring megolm session ratchet data
– Entirely new device tracking API to improve session sharing

reliability
– “Rageshake” bug reporting to help debug when things fail

• Unfortunately E2E is definitely still in beta.
• Develop branches of Riot/iOS & Riot/Android are

implementing the above too.

40

Latest release info

• Ability to share session ratchet data with new devices or
new room participants

• Cross-signing device keys?
• Better device verification
• Better push notification UX for E2E rooms
• Better primitives & performance
• Turning on E2E by default for rooms with private history
• Negotiating E2E with legacy clients(?)

41

Olm: What’s next?

• More hosted bridges, bots, services etc
• Threading
• Message tagging (e.g. “Like” support)
• Group ACLs
• File tagging and management
• Decentralised identity
• “Fixing spam”

42

Matrix: What’s next?

We need help!!

43

• We need people to try running their own
servers and join the federation.

• We need people to run gateways to their
existing services

• We need feedback on the APIs.
• Consider native Matrix support for new

apps
• Follow @matrixdotorg and spread the

word!

44

Thank you!
matthew@matrix.org

http://matrix.org
@matrixdotorg

45

Alice Bob
Alice and Bob both generate identity (I) &
ephemeral (E) elliptic curve key pairs

Initial Shared Secret (ISS) =
ECDH(Ea, Ib) +
ECDH(Ia, Eb) +
ECDH(Ea, Eb)

Discard Ea
Derive chain key from ISS (HMAC)
Derive message key (K0) from chain key
(HMAC)
Derive new chain key ß hash ratchet
M0 = Message plaintext
C0 = Authenticated Encryption of (M0, K0)
Ra0 = generate random ratchet key pair
Ja0 = incremental counter for each hash
ratchet advancement

Ia, Ea, Eb, Ra0, Ja0, C0

A Double ratchet.
Kinda sorta.

Alice Bob
Compute same Initial Shared Secret =

ECDH(Ea, Ib) +
ECDH(Ia, Eb) +
ECDH(Ea, Eb)

Compute same K0
M0 = Authenticated decryption of (C0, K0)

To respond, B starts new ratchet chain:
Rb1 = generate random ratchet key pair
New Initial Shared Secret =

ECDH(Ra0, Rb1) ß ECDH Ratchet

C0 = Authenticated Encryption of (M, K0)
Ra0 = generate random ratchet key
Ja0 = incremental counter for each hash
ratchet advancement

Rb1, Jb1, C1

A Double ratchet.
Kinda sorta.

The client-server API
To send a message:

curl -XPOST -d '{"msgtype":"m.text", "body":"hello"}'
"https://alice.com:8448/_matrix/client/api/v1/rooms/ROOM_
ID/send/m.room.message?access_token=ACCESS_TOKEN"

{
"event_id": "YUwRidLecu"

}

48

The client-server API
To set up a WebRTC call:

curl -XPOST –d '{\
"version": 0, \
"call_id": "12345”, \
"offer": {
"type" : "offer”,
"sdp" : "v=0\r\no=- 658458 2 IN IP4 127.0.0.1…"

}
}'
"https://alice.com:8448/_matrix/client/api/v1/rooms/ROOM_
ID/send/m.call.invite?access_token=ACCESS_TOKEN"

{ "event_id": "ZruiCZBu” } 49

Basic 1:1 VoIP Matrix Signalling

Caller Callee
m.call.invite ----------->
m.call.candidate -------->
[more candidates events]

User answers call
<------ m.call.answer

[media flows]
<------ m.call.hangup

50

51

Bridges and Integrations

Existing App

Application
Service

3rd party
Server

3rd party
Clients

Typical Bridging Stack

52

matrix-
appservice-

irc

matrix-appservice-bridge

matrix-appservice-node

matrix-js-sdk

Node	JS

matrix-
appservice-

slack

matrix-
appservice-
purple …

53

Matrix to IOT…

Janus WebRTC Gateway
(from MeetEcho)

Parrot Bebop
Drone

https://www.youtube.com/watch?v=D7jZSYkXqt4&t=2649

Matrix and VR…

